O.P.Code: 20HS0823

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

M.Tech I Year I Semester Supplementary Examinations August-2024 RESEARCH METHODOLOGY AND IPR

	(Common to all)			
Tir	ne: 3 Hours (Answer all Five Units $5 \times 12 = 60$ Marks)	Max.	Marl	rs: 60
	UNIT-1			
1	What do you understand by the term Research Problem? What are the	CO1	L2	12M
	objectives of the Research Problem?			
	OR			
2	Explain different sources of the research problem by giving suitable	CO1	L3	12M
	examples under source.			
	UNIT-II			
3	What are the various means of conducting literature surveys in modern	CO2	L2	12M
	times?			
	OR			
4	Give a detailed description on the maintenance of ethics in research work.	CO2	L3	12M
	UNIT-III			
5	Explain essential features of report writing highlighting the importance and	CO3	L2	12M
	implication of research outcomes.			
	OR			
6	What is technical writing? What tools do technical writers use?	CO3	L2	12M
	UNIT-IV			
7	Discuss Radical Innovation and Incremental Innovation by quoting real-	CO4	L3	12M
	time examples.			
	OR			
8	What is the difference between copyrights, trademarks, and patents?	CO4	L3	12M
	UNIT-V			
9	What does it mean to "Licence a Patent" and why is it done?	CO5	L3	12M
	OR			
10	What are the new developments in IPR with respect to the administration of	CO5	L3	12M
	patent system? Explain in detail.			

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

M.Tech I Year I Semester Supplementary Examinations August-2024 STRUCTURAL HEALTH MONITORING

(Structural Engineering) Time: 3 Hours		Max.	e: 60	
111110	(Answer all Five Units $5 \times 12 = 60$ Marks)		MIAIA	.s. 00
	UNIT-I			
1	Brief our scope of maintenance and list out various facts of maintenance.	CO1	L2	12M
	OR			
2	Explain importance of maintenance various aspects of inspection.	CO1	L1	12M
	UNIT-II			
3	What is structural audit and explain purpose of structural audit.	CO2	L1	12M
	OR			
4	Explain in detail assessment of a health of a structure.	CO2	L1	12M
	UNIT-III			
5	List out various advantages and disadvantages of types of static tests in	CO3	L1	12M
	static field testing.			
	OR			
6	Define static field testing and types of static tests.	CO3	L1	12M
	UNIT-IV			
7	Describe the procedure of forced vibration method.	CO4	L2	12M
	OR			
8	Explain the procedure of ambient vibration and its importance.	CO4	L1	12M
	UNIT-V			
9	Explain in detail sensor technology in structural Health monitoring.	CO5	L2	12M
	OR			
10	List out various advantages and disadvantages of piezoelectric materials	CO5	L1	12M
	*** END ***			

O.P.Code: 20CS5001

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

M.Tech I Year I Semester Supplementary Examinations August-2024 Advanced Data Structures

(CSE)

Tin	ıe:	3 Hours	Max.	Mari	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			25. 00
		UNIT-I			
1		Define Hashing. Explain the Hash Functions with suitable example.	CO1	L3	12M
		OR			
2	a	With an example explain quadratic probing and use hashing.	CO1	L5	6M
	b	Differentiate between linear probing and quadratic probing	CO1	L4	6M
		UNIT-II			
3	a	Explain the structure of probabilistic skip list	CO2	L3	6M
	b	What is the search cost of probabilistic skip list	CO2	L2	6M
		OR			
4	a	What is binary search tree and explain advantages of binary search tree.	CO ₂	L3	4M
	b	Create a binary search tree with the following data elements 45, 15, 79,	CO2	L5	8M
		90, 10, 55, 12, 20, 50			
		UNIT-III			
5		Implement the text processing software by applying brute force pattern	CO3	L6	12M
		matching			
		OR			
6		Compare standard Tries , Compressed Tries and suffix Tries	CO4	L6	12M
		UNIT-IV			
7		Explain how to Search a Priority Search Tree works and its operations.	CO5	L2	12M
		OR			
8		What is Priority Range Trees discuss with an example?	CO5	L3	12M
		UNIT-V			
9		In the real world where we will use hash functions. Justify.	CO6	L6	12M
		OR			
10		What are the advantage and disadvantage of Hashing?	CO6	L1	12M
		*** END ***			

O.P.Code: 20CS5002

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

M.Tech I Year I Semester Supplementary Examinations August-2024 PYTHON PROGRAMMING

(Computer Science & Engineering)

		(Computer Science & Engineering)					
Time: 3 Hours				Max. Marks: 60			
		(Answer all Five Units $5 \times 12 = 60$ Marks)					
		UNIT-I					
1		Describe the list and its methods with example.	CO1	L1	12M		
		OR					
2	a	Discuss the basic Tuple operations with examples.	CO ₂	L6	6M		
	b	Illustrate the input and output statements with example.	CO1	L2	6 M		
		UNIT-II					
3	a	What are the different loop control statements available in Python?	CO1	L1	6M		
		Explain with suitable examples.					
	b	Discuss the Membership and Identity operators with example.	CO ₂	L2	6 M		
		OR					
4	a	What is Range in Python? and Write a for loop that prints numbers	CO1	L1	6M		
		from 0 to 17, using range function.					
	b	Create a Python program to display Fibonacci series.	CO1	L6	6M		
		UNIT-III					
5	a	Demonstrate implementation of hierarchical inheritance in Python,	CO ₄	L3	6M		
		with a program.					
	b	Discuss about key word arguments with example	CO ₃	L2	6M		
		OR					
6		What is inheritance? Illustrate types of inheritance with python code.	CO ₄	L2	12M		
		UNIT-IV					
7	a	Write about Errors and Exception Handling in Python programming.	CO4	L3	6M		
	b	Write a brief note on PIP. Explain installing packages via PIP.	CO6	L3	6M		
		OR					
8	a	Explain about the import statement in modules.	CO ₃	L2	6 M		
		Explain Python Built-in Exceptions.	CO ₄	L5	6M		
		UNIT-V					
9	a	What is Data Management and Object Persistence?	CO5	L1	6M		
		Explain about colors and filled shapes.	CO4	L2	6M		
	_	OR		- -			
10	a	Illustrate about Command line arguments.	CO4	L3	8M		
		Write about Dates and Times.	CO5	L3	4M		

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

M.Tech I Year I Semester Supplementary Examinations August-2024 ADVANCED FLUID DYNAMICS

***	ADVANCED FLUID DYNAMICS (Thermal Engineering)	36		
Time: 3 Hours (Answer all Five Units $5 \times 12 = 60$ Marks)			Mark	s: 60
	UNIT-I			
1	How would you describe the following:	CO1	L1	12M
-	(i) Bernoulli's equation (ii) Three dimensional flow (iii) Laminar flow			
	(iv) Viscous flow (v) Steady flow			
	OR			
2	Discuss in detail about the derivation of momentum equation by using	CO1	L5	12M
	integral and differential approach			
	UNIT-II			
3	Discuss in detail about the irrotational flow.	CO2	L5	12M
	OR			
4	What are the application of empirical relation to various geometries for	CO2	L1	12M
	laminar and turbulent flows and explain in detail.			
	UNIT-III			
5	Explain in detail about the boundary layer equation.	CO3	L1	12M
	OR			
6	Prove the boundary layer equation.	CO3	L6	12M
	UNIT-IV			
7	Explain the characteristics of turbulent flow.	CO4	L1	12M
	OR			
8	Derive the governing equation for turbulent flow.	CO4	L5	12M
	UNIT-V			
9	Discuss about the sources of error in measurements.	CO5	L5	12M
	· OR			
10	Evaluate the role of experiments in engineering with suitable examples.	CO5	L6	12M
	*** END ***			

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

M.Tech I Year I Semester Supplementary Examinations August-2024 NUCLEAR ENGINEERING

(Thermal Engineering)

Time: 3 Hours	`		8	0,	,	Max. Marks: 60
		11 774	TT	4.0	(0.3 (1)	

(Answer all Five Units $5 \times 12 = 60$ Marks)

What is the need for enrichment of uranium? Describe the most CO1 efficient and elaborated methods suited to produce highly enriched U ²³⁵ . OR	L1 L2 L1	12M 6M 6M
U^{235} .	L1	6M
OR	L1	6M
	L1	6M
	L.2	CM
UNIT-II	1.2	
3 a Write the salient equations of Neutron diffusion theory.		6M
1	L2	6M
calculations.		
OR		467.5
4 Mention the importance of Fick's law in diffusion of Neutron. CO2	L2	12M
UNIT-III		
	L1	12M
OR	т 2	103/
6 Classify the reactors used in nuclear power plant and explain Boiling CO3 water Reactor with a neat sketch.	LZ	12M
Water Reactor with a neat sketch. UNIT-IV		
	т 2	103/
7 Mention the significance of point kinematic equations in the nuclear CO4 Power.	L2	12M
OR		
8 Write an equation for simple point Kinematics and mention the CO4	1.2	12M
importance of each term in that.		12111
UNIT-V		
	L1	12M
OR	1-1	14141
	L2	12M

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

M.Tech I Year I Semester Supplementary Examinations August-2024

ELECTRIC DRIVE SYSTEMS

(Electrical and Electronics Engineeirng)

Time: 3 Hours Ma			ax. Marks: 60		
	(Answer all Five Units $5 \times 12 = 60$ Marks)				
	UNIT-I				
1	Derive the expression for torque equation in electrical drives.	CO1	L3	12M	
	OR				
² 2	Explain four quadrant operation of motor drive system with hoist load.	CO1	L4	12M	
	UNIT-II				
3	Derive the load equation of motor in electric drive system.	CO ₂	L4	12M	
	OR				
4	How a phase does locked loop speed control schemes operate? Where do	CO ₂	L5	12M	
	you use it?				
	UNIT-III				
5	Design a current controller of DC Motor Drive.	CO3	L3	12M	
	OR				
6	Explain the Dynamic simulation of speed controlled DC motor Drive.	CO3	L3	12M	
	UNIT-IV				
7	Describe the speed control of Inverter-Driven induction motor.	CO4	L2	12M	
	OR				
8	What is the principle of vector control and explain the direct vector control	CO4	L2	12M	
	scheme.				
	UNIT-V				
9	Explain briefly about the construction of stepper motor.	CO5	L3	12M	
	OR				
10	What are the types of electric traction services? Explain briefly.	CO5	L2	12M	

Q.P.Code: 20EE2103

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

M.Tech I Year I Semester Supplementary Examinations August-2024 ADVANCED POWER ELECTRONIC CIRCUITS

(Power Electronics) Time: 3 Hours (Answer all Five Units 5 x 12 = 60 Mark			B/f	N#1	- 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)	wax.	Mark	ks: 60
		UNIT-I			
1		What are the operating modes of basic series inverter.	CO1	L1	12M
		OR			
2		Draw the circuit diagram for 1-φ capacitor commutated CSI with R-load	CO1	L3	12M
		and explain in detail.			
		UNIT-II			
3		Explain about the operation of single phase SMR's with neat circuit	CO ₂	L2	12M
		diagram.			
		OR			
4		How to correct the active power factor by using single phase boost type	CO ₂	L3	12M
		APFC SMR.			
		UNIT-III			
5		What are the operating modes of Buck converter.	CO3	L1	12M
		OR			
6		Classify the converters based on various aspects.	CO3	L3	12M
		UNIT-IV			3
7		Explain the modes of operation of full-bridge converter.	CO4	L3	12M
		OR			
8	a	Compare flyback converter and forward converter.	CO4	L2	6M
	b	Compare forward and half -bridge converter.	CO4	L2	6M
		UNIT-V			
9		Explain about parallel resonant inverter with neat circuit diagram and	CO5	L3	12M
		waveforms.			
		OR			
10		How to control the voltage in series resonant inverter.	CO5	L2	12M
		*** END ***			*

O.P.Code: 20EE2107 R20 H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

M.Tech I Year I Semester Supplementary Examinations August-2024 STATIC VAR CONTROLLERS AND HARMONIC FILTERING

	STATIC VAR CONTROLLERS AND HARMONIC FILTERING						
Tir	ne: 3 Hours (Power Electronics)	Max.	Mar	ks: 60			
	(Answer all Five Units $5 \times 12 = 60$ Marks)						
	UNIT-I			*			
1	Explain the necessity of reactive shunt compensation in transmission	CO1	L2	12M			
	system. Explain the objectives of shunt compensation.						
	OR						
2	Explain, how series compensation can be applied effectively to damp oscillations?	CO1	L2	12M			
	UNIT-II						
3	Explain about thyristor Controlled Series Compensators.	CO ₂	L2	12M			
	OR						
4	Explain the concept of series capacitive compensation.	CO2	L2	12M			
	UNIT-III			72			
5	Explain the operation of three phase full-wave bridge converter with neat	CO3	L2	12M			
	circuit.						
	OR						
6	Explain the transformer connection for 24- pulse operation.	CO3	L2	12M			
	UNIT-IV						
7	Explain Three Phase Three-wire Shunt Active Filtering and their control	CO4	L2	12M			
	using p-q theory and d-q modeling.						
	OR						
8	Explain Hybrid Filtering using Shunt Active Filters.	CO4	L2	12M			
	UNIT-V			36			
9	Explain about Series Active Filtering in Harmonic Isolation mode.	CO5	L2	12M			
	OR						
10	Explain the Series APF in Harmonic cancellation mode.	CO5	L2	12M			
	*** END ***						

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

M.Tech I Year I Semester Supplementary Examinations August-2024 AIR-CONDITIONING SYSTEM DESIGN

(Thermal Engineering)

Time: 3 Hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1 Explain the thermodynamics of human body.

CO1 L2 12M

OR

Write the various psychometric processes? Explain any four processes with neat sketches.

CO1

L1 12M

UNIT-II

3 Discuss briefly the different types of heat loads which have to be taken CO2 into account while designing air conditioning system?

CO₂ L

12M

OR

4 Explain about occupant load.

CO₅

L2 12M

12M

12M

L3

L3

UNIT-III

In air conditioning system, the inside and outside conditions are dry bulb temperature 25°C, relative humidity 50% and dry bulb temperature 40°C, wet bulb temperature 27°C respectively. The room sensible heat factor is 0.85. 50% of the room air is rejected to atmosphere and an equal quantity of fresh air added before air enters the air conditioning apparatus. If the fresh air added is 100m3/min, Determine: a. Room sensible and latent heat load b. Sensible and latent heat load due to the fresh air c. Apparatus dew point d. Humidity ratio and dry bulb temperature of air entering air conditioning apparatus. Assume by pass factor as zero, density of air as 1.2 kg/m3 at a total pressure of 1.01325 bar.

OR

A conference room for seating 100 persons is to be maintained at 220C DBT and 60% relative humidity. The outdoor conditions are 400C DBT and 270C WBT. The various loads in the auditorium are as follows: Sensible and latent heat loads per person, 80W and 50W respectively: lights and fans, 15000W: sensible heat gain through glass, walls, ceiling, etc., 15000W. The air infiltration is 20 m3/min and fresh air supply is 100 m3/min. Two-Third of re circulated room air and one-third of fresh air are mixed before entering the cooling coil. The by-pass factor of the coil is 0.1. Determine Apparatus Dew Point, the Grand Total Heat Load and Effective Room Sensible Heat Factor.

UNIT-IV

7 a Explain in detail about fan and its types.

CO₁

CO₁

L2 6M

b Describe the types of blowers based on air flow patterns with sketches.

CO1

L1 6M

OR

8	a	What is dehumidification and the necessity of it? What are the common	CO ₁	L1	6 M
		methods of dehumidification?			
	b	Advantages and disadvantages of dehumidifying.	CO ₃	L4	6M
		UNIT-V			
9		Explain about designs of air conditioning system.	CO ₁	L2	12M
		OR			
10	a	Explain about duct design and its recommended velocities.	CO ₃	L2	6M
	b	Explain about Pressure drop.	CO ₂	L2	6M
		*** END ***			

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

M.Tech I Year I Semester Supplementary Examinations August-2024 THERMODYNAMICS AND COMBUSTION

		THERMODYNAMICS AND COMBUSTION					
	(Thermal Eengineeting)						
Tim					60		
		(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I					
1		An insulated gas cylinder of volume 0.1 m ³ contains air (an ideal gas) at	CO1	L5	12M		
		5000 kPa and 300 K. The valve of the cylinder is opened allowing the air					
		to escape till air pressure in the cylinder reaches 3000 kPa. Determine					
		the temperature of the air left in the cylinder and the mass of the air that					
		escaped from the cylinder.					
		OR					
2		A fuel at 25° C is burned in a well insulated steady flow	CO ₁	L5	12M		
		combustion chamber with air that is also at 25° C. under what condition					
		will the adiabatic flame temperature of the combustion process be a					
		maximum.					
•		UNIT-II	COA		~		
3	a	One kmol of octane C ₈ H ₁₈ is burned with air that contains 20 kmol	CO ₂	L5	6 M		
		of O ₂ . assuming the product contains only CO ₂ , H ₂ O, O ₂ and N ₂ ,					
		determine the mol number of each gas in the products and the air-					
	h	fuel ratio for this combustion process. How does the presence of N_2 in air affects the outcome of a combustion	CO2	L1	6M		
	U	process. What does the dew point temperature of the product gases	CO2	LI	OIVI		
		represent? How it is determined?					
		OR					
4		What are the causes of incomplete combustion and what the difference	CO2	L1	12M		
		betweencomplete and incomplete combustion.					
		UNIT-III					
5		Liquid propane C ₃ H ₈ enters a steady-flow combustion chamber at 25°	CO ₃	L5	12M		
		C and 1 atm at a rate of 0.4 kg/min where it is mixed and burned with					
		150 percent excess air that enters the combustion chamber at 12° C. if					
		the combustion leave at 1200 K and 1 atm, determine i) the mass flow					
		rate of air, ii) the rate of heat transfer from the combustion chamber, and					
		iii) the rate of entropy generation during this process. Assume To=25° C					
		OR					
6		A gases fuel with 80% CH ₄ ,15% N ₂ and 5 % O ₂ is burned with dry air	CO ₃	L5	12M		
		that enters the combustion chamber at 25° C and 100 kpa. The					
		volumetricanalysis of the product on a dry basis is 3.36% CO ₂ , 0.09%					
	-	CO, 14.91% O ₂ , and 81.64% N ₂ . Detremine the air-fuel ratio, percent		-			
		theoretical air used, volume flow rate and air used to burn fuel at a rate					
		of 1.4 kg/min.					
_		What are the first of the line	004	т 4	103.5		
7		What are the factors affects the burner efficiency and give remedial	CO4	L1	12M		
		action toovercome those effects. OR					
8			CO4	L2	12M		
o		Explain with neat sketch of air aspiration gas burner.	CO4	114	14111		

		UNIT-V			
9	a What is mean l	by direct energy conversion method and classify it	CO ₅	L1	6 M
	according to theib Discuss in detail	about PV CELL energy system and their classification.	CO5	L6	6M
		OR			
10		ionic energy system with neat sketch and list out the	CO ₅	L2	12M
	materials used in	ı it.			
		*** END ***			